Homogenized Dynamics of Stochastic Partial Differential Equations with Dynamical Boundary Conditions

نویسنده

  • WEI WANG
چکیده

A microscopic heterogeneous system under random influence is considered. The randomness enters the system at physical boundary of small scale obstacles as well as at the interior of the physical medium. This system is modeled by a stochastic partial differential equation defined on a domain perforated with small holes (obstacles or heterogeneities), together with random dynamical boundary conditions on the boundaries of these small holes. A homogenized macroscopic model for this microscopic heterogeneous stochastic system is derived. This homogenized effective model is a new stochastic partial differential equation defined on a unified domain without small holes, with static boundary condition only. In fact, the random dynamical boundary conditions are homogenized out, but the impact of random forces on the small holes’ boundaries is quantified as an extra stochastic term in the homogenized stochastic partial differential equation. Moreover, the validity of the homogenized model is justified by showing that the solutions of the microscopic model converge to those of the effective macroscopic model in probability distribution, as the size of small holes diminishes to zero. Dedicated to Giuseppe Da Prato on the occasion of his 70th birthday Date: September 13, 2006 submitted; March 2, 2007 accepted. 2000 Mathematics Subject Classification. Primary 60H15; Secondary 86A05, 34D35.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Study ‎of ‎S‎ome Boundary Value Problems Including Fractional ‎Partial ‎Differential‎ Equations with non-Local Boundary Conditions

In this paper, we consider some boundary value problems (BVP) for fractional order partial differential equations ‎(FPDE)‎ with non-local boundary conditions. The solutions of these problems are presented as series solutions analytically via modified Mittag-Leffler functions. These functions have been modified by authors such that their derivatives are invariant with respect to fractional deriv...

متن کامل

Reductions and Deviations for Stochastic Partial Differential Equations under Fast Dynamical Boundary Conditions

As a model for multiscale systems under random influences on physical boundary, a stochastic partial differential equation under a fast random dynamical boundary condition is investigated. An effective equation is derived and justified by reducing the random dynamical boundary condition to a random static boundary condition. The effective system is still a stochastic partial differential equati...

متن کامل

Nonlinear Dynamics of the Rotational Slender Axially Moving String with Simply Supported Conditions

In this research, dynamic analysis of the rotational slender axially moving string is investigated. String assumed as Euler Bernoulli beam. The axial motion of the string, gyroscopic force and mass eccentricity were considered in the study. Equations of motion are derived using Hamilton’s principle, resulting in two partial differential equations for the transverse motions. The equations are ch...

متن کامل

Optimal control of stochastic differential equations with dynamical boundary conditions

In this paper we investigate the optimal control problem for a class of stochastic Cauchy evolution problem with non standard boundary dynamic and control. The model is composed by an infinite dimensional dynamical system coupled with a finite dimensional dynamics, which describes the boundary conditions of the internal system. In other terms, we are concerned with non standard boundary conditi...

متن کامل

Invariant Manifold Reduction and Bifurcation for Stochastic Partial Differential Equations

Stochastic partial differential equations arise as mathematical models of complex multiscale systems under random influences. Invariant manifolds often provide geometric structure for understanding stochastic dynamics. In this paper, a random invariant manifold reduction principle is proved for a class of stochastic partial differential equations. The dynamical behavior is shown to be described...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007